

CS103CS103
Fall 2025Fall 2025

Lecture 19:
Context-Free Grammars

A Motivating Question

python3

>>>

python3

>>> (137 + 42) – 2 * 3

python3

>>> (137 + 42) – 2 * 3
173

>>>

python3

>>> (137 + 42) – 2 * 3
173

>>> (60 + 37) + 5 * 8

python3

>>> (137 + 42) – 2 * 3
173

>>> (60 + 37) + 5 * 8
137

>>>

python3

>>> (137 + 42) – 2 * 3
173

>>> (60 + 37) + 5 * 8
137

>>> (200 / 2) + 6 / 2

python3

>>> (137 + 42) – 2 * 3
173

>>> (60 + 37) + 5 * 8
137

>>> (200 / 2) + 6 / 2
103.0

>>>

Mad Libs for Arithmetic

Int Op Int Op Int Op Int

Slide credit: Amy Liu

()

Mad Libs for Arithmetic

 26 + 42 * 2 + 1
Int Op Int Op Int Op Int

Slide credit: Amy Liu

()

Mad Libs for Arithmetic

Int Op Int Op Int Op Int

Slide credit: Amy Liu

()

Mad Libs for Arithmetic

 7 * 5 / 5 - 49
Int Op Int Op Int Op Int

Slide credit: Amy Liu

()

Mad Libs for Arithmetic

Int Op Int Op Int Op Int

Slide credit: Amy Liu

()
This only lets us make arithmetic expressions

of the form (Int Op Int) Op Int Op Int.

What about arithmetic expressions that don’t
follow this pattern?

Recursive Mad Libs

Expr

Recursive Mad Libs

Expr

What can an arithmetic expression be?

 int A single number.
 Expr Op Expr Two expressions joined by an operator.
 (Expr) A parenthesized expression.

Recursive Mad Libs

Expr

What can an arithmetic expression be?

 int A single number.
 Expr Op Expr Two expressions joined by an operator.
 (Expr) A parenthesized expression.

int

Recursive Mad Libs

Expr

What can an arithmetic expression be?

 int A single number.
 Expr Op Expr Two expressions joined by an operator.
 (Expr) A parenthesized expression.

Recursive Mad Libs

Expr

What can an arithmetic expression be?

 int A single number.
 Expr Op Expr Two expressions joined by an operator.
 (Expr) A parenthesized expression.

Recursive Mad Libs

Op

What can an arithmetic expression be?

 int A single number.
 Expr Op Expr Two expressions joined by an operator.
 (Expr) A parenthesized expression.

Expr Expr

Recursive Mad Libs

Op

What can an arithmetic expression be?

 int A single number.
 Expr Op Expr Two expressions joined by an operator.
 (Expr) A parenthesized expression.

Expr Expr

int

Recursive Mad Libs

Op

What can an arithmetic expression be?

 int A single number.
 Expr Op Expr Two expressions joined by an operator.
 (Expr) A parenthesized expression.

Expr Expr

int +

Recursive Mad Libs

Op

What can an arithmetic expression be?

 int A single number.
 Expr Op Expr Two expressions joined by an operator.
 (Expr) A parenthesized expression.

Expr Expr

int +

Recursive Mad Libs

Op

What can an arithmetic expression be?

 int A single number.
 Expr Op Expr Two expressions joined by an operator.
 (Expr) A parenthesized expression.

Expr Expr

int +
ExprOp

Recursive Mad Libs

Op

What can an arithmetic expression be?

 int A single number.
 Expr Op Expr Two expressions joined by an operator.
 (Expr) A parenthesized expression.

Expr Expr

int +
ExprOp

Recursive Mad Libs

Op

What can an arithmetic expression be?

 int A single number.
 Expr Op Expr Two expressions joined by an operator.
 (Expr) A parenthesized expression.

Expr Expr

int +
ExprOp

int

Recursive Mad Libs

Op

What can an arithmetic expression be?

 int A single number.
 Expr Op Expr Two expressions joined by an operator.
 (Expr) A parenthesized expression.

Expr Expr

int +
ExprOp

int ×

Recursive Mad Libs

Op

What can an arithmetic expression be?

 int A single number.
 Expr Op Expr Two expressions joined by an operator.
 (Expr) A parenthesized expression.

Expr Expr

int +
ExprOp

int × int

Recursive Mad Libs

Expr

What can an arithmetic expression be?

 int A single number.
 Expr Op Expr Two expressions joined by an operator.
 (Expr) A parenthesized expression.

Recursive Mad Libs

Expr

What can an arithmetic expression be?

 int A single number.
 Expr Op Expr Two expressions joined by an operator.
 (Expr) A parenthesized expression.

Recursive Mad Libs

Expr

What can an arithmetic expression be?

 int A single number.
 Expr Op Expr Two expressions joined by an operator.
 (Expr) A parenthesized expression.

()

Recursive Mad Libs

Expr

What can an arithmetic expression be?

 int A single number.
 Expr Op Expr Two expressions joined by an operator.
 (Expr) A parenthesized expression.

()

Recursive Mad Libs

Op

What can an arithmetic expression be?

 int A single number.
 Expr Op Expr Two expressions joined by an operator.
 (Expr) A parenthesized expression.

()
Expr Expr

Recursive Mad Libs

Op

What can an arithmetic expression be?

 int A single number.
 Expr Op Expr Two expressions joined by an operator.
 (Expr) A parenthesized expression.

()
Expr Expr

Recursive Mad Libs

Op

What can an arithmetic expression be?

 int A single number.
 Expr Op Expr Two expressions joined by an operator.
 (Expr) A parenthesized expression.

()
Expr Expr

int

Recursive Mad Libs

Op

What can an arithmetic expression be?

 int A single number.
 Expr Op Expr Two expressions joined by an operator.
 (Expr) A parenthesized expression.

()
Expr Expr

int /

Recursive Mad Libs

Op

What can an arithmetic expression be?

 int A single number.
 Expr Op Expr Two expressions joined by an operator.
 (Expr) A parenthesized expression.

()
Expr Expr

int /

Recursive Mad Libs

Op

What can an arithmetic expression be?

 int A single number.
 Expr Op Expr Two expressions joined by an operator.
 (Expr) A parenthesized expression.

()
Expr Expr

int /)(

Recursive Mad Libs

Op

What can an arithmetic expression be?

 int A single number.
 Expr Op Expr Two expressions joined by an operator.
 (Expr) A parenthesized expression.

()
Expr Expr

int /)(

Recursive Mad Libs

Op

What can an arithmetic expression be?

 int A single number.
 Expr Op Expr Two expressions joined by an operator.
 (Expr) A parenthesized expression.

()
Expr Expr

int /)(

Recursive Mad Libs

Op

What can an arithmetic expression be?

 int A single number.
 Expr Op Expr Two expressions joined by an operator.
 (Expr) A parenthesized expression.

()
Expr Expr

int /)(
Op Expr

Recursive Mad Libs

Op

What can an arithmetic expression be?

 int A single number.
 Expr Op Expr Two expressions joined by an operator.
 (Expr) A parenthesized expression.

()
Expr Expr

int /)(
Op Expr

Recursive Mad Libs

Op

What can an arithmetic expression be?

 int A single number.
 Expr Op Expr Two expressions joined by an operator.
 (Expr) A parenthesized expression.

()
Expr Expr

int /)(
Op Expr

int

Recursive Mad Libs

Op

What can an arithmetic expression be?

 int A single number.
 Expr Op Expr Two expressions joined by an operator.
 (Expr) A parenthesized expression.

()
Expr Expr

int /)(
Op Expr

int +

Recursive Mad Libs

Op

What can an arithmetic expression be?

 int A single number.
 Expr Op Expr Two expressions joined by an operator.
 (Expr) A parenthesized expression.

()
Expr Expr

int /)(
Op Expr

int + int

A context-free grammar (or CFG) is a
recursive set of rules that define a

language.

(There’s a bunch of specific requirements about
what those rules can be; more on that in a bit.)

Arithmetic Expressions
● Here’s how we might express the

recursive rules from earlier as a CFG.

Expr → int
Expr → Expr Op Expr
Expr → (Expr)
Op → +
Op → -
Op → ×
Op → /

This is called a
production rule. It
says “if you see Expr,
you can replace it with

Expr Op Expr.”

Arithmetic Expressions
● Here’s how we might express the

recursive rules from earlier as a CFG.

Expr → int
Expr → Expr Op Expr
Expr → (Expr)
Op → +
Op → -
Op → ×
Op → /

This one says “if you
see Op, you can
replace it with -.”

Arithmetic Expressions
● Here’s how we might express the

recursive rules from earlier as a CFG.

Expr → int
Expr → Expr Op Expr
Expr → (Expr)
Op → +
Op → -
Op → ×
Op → /

⇒ Expr
⇒ Expr Op Expr
⇒ Expr Op int
⇒ int Op int
⇒ int / int

Arithmetic Expressions
● Here’s how we might express the

recursive rules from earlier as a CFG.

Expr → int
Expr → Expr Op Expr
Expr → (Expr)
Op → +
Op → -
Op → ×
Op → /

⇒ Expr
⇒ Expr Op Expr
⇒ Expr Op int
⇒ int Op int
⇒ int / int

These red symbols are
called nonterminals.

They’re placeholders that
get expanded later on.

Arithmetic Expressions
● Here’s how we might express the

recursive rules from earlier as a CFG.

Expr → int
Expr → Expr Op Expr
Expr → (Expr)
Op → +
Op → -
Op → ×
Op → /

⇒ Expr
⇒ Expr Op Expr
⇒ Expr Op int
⇒ int Op int
⇒ int / int

The symbols in blue
monospace are terminals.
They’re the final characters

used in the string and
never get replaced.

Arithmetic Expressions
● Here’s how we might express the

recursive rules from earlier as a CFG.

Expr
⇒ Expr Op Expr
⇒ Expr Op (Expr)
⇒ Expr Op (Expr Op Expr)
⇒ Expr × (Expr Op Expr)
⇒ int × (Expr Op Expr)
⇒ int × (int Op Expr)
⇒ int × (int Op int)
⇒ int × (int + int)

Expr → int
Expr → Expr Op Expr
Expr → (Expr)
Op → +
Op → -
Op → ×
Op → /

Context-Free Grammars
● Formally, a context-free grammar

is a collection of four items:
● a set of nonterminal symbols

(also called variables),
● a set of terminal symbols (the

alphabet of the CFG),
● a set of production rules saying

how each nonterminal can be
replaced by a string of terminals
and nonterminals, and

● a start symbol (which must be a
nonterminal) that begins the
derivation. By convention, the start
symbol is the one on the left-hand
side of the first production.

Expr → int
Expr → Expr Op Expr
Expr → (Expr)
Op → +
Op → -
Op → ×
Op → /

Some CFG Notation
● In today’s slides, capital letters in Bold Red

Uppercase will represent nonterminals.
● e.g. A, B, C, D

● Lowercase letters in blue monospace will represent
terminals.
● e.g. t, u, v, w

● Lowercase Greek letters in gray italics will
represent arbitrary strings of terminals and
nonterminals.
● e.g. α, γ, ω

● You don't need to use these conventions on your
own; just make sure whatever you do is readable. 😃

A Notational Shorthand

Expr → int
Expr → Expr Op Expr
Expr → (Expr)
Op → +
Op → -
Op → ×
Op → /

A Notational Shorthand

Expr → int | Expr Op Expr | (Expr)
Op → + | - | × | /

Derivations
⇒ Expr
⇒ Expr Op Expr
⇒ Expr Op (Expr)
⇒ Expr Op (Expr Op Expr)
⇒ Expr × (Expr Op Expr)
⇒ int × (Expr Op Expr)
⇒ int × (int Op Expr)
⇒ int × (int Op int)
⇒ int × (int + int)

● A sequence of zero or more
steps where nonterminals are
replaced by the right-hand
side of a production is called a
derivation.

● If string α derives string ω,
we write α ⇒* ω.

● In the example on the left, we
see that
Expr ⇒* int × (int + int).

Expr → int | Expr Op Expr | (Expr)
Op → + | - | × | /

The Language of a Grammar
● If G is a CFG with alphabet Σ and start

symbol S, then the language of G is the
set

ℒ(G) = { ω ∈ Σ* | S ⇒* ω }
● That is, (ℒ G) is the set of strings of

terminals derivable from the start
symbol.

Consider the following CFG G over Σ = {a, b, c, d}:

Q → Qa | dH
H → bHb | c

Which of the following strings are in (ℒ G)?

dca
dc
cad
bcb

dHaa

If G is a CFG with alphabet Σ and start symbol S,
then the language of G is the set

ℒ(G) = { ω ∈ Σ* | S ⇒* ω }

Answer at https://cs103.stanford.edu/pollev

https://cs103.stanford.edu/pollev

Context-Free Languages
● A language L is called a context-free

language (or CFL) if there is a CFG G
such that L = (ℒ G).

● Questions:
● How are context-free and regular languages

related?
● How do we design context-free grammars for

context-free languages?

Context-Free Languages

A language L is called a context-free
language (or CFL) if there is a CFG G
such that L = (ℒ G).
Questions:
● How are context-free and regular languages

related?
How do we design context-free grammars for
context-free languages?

Five Possibilities

REG CFL

REG
CFL

REG CFL CFLREG

REG CFL

CFGs and Regular Expressions
● CFGs consist purely of production rules of the

form A → ω. They do not have the regular
expression operators * or ∪.

● You can use the symbols * and ∪ if you’d like in
a CFG, but they just stand for themselves.

● Consider this CFG G:
S → a*b

● Here, (ℒ G) = {a*b} and has cardinality one.
That is, (ℒ G) ≠ { anb | n ∈ ℕ }.

CFGs and Regular Expressions
● Theorem: Every regular language is context-free.
● Proof idea: Show how to convert an arbitrary

regular expression into a context-free grammar.

a (b ∪ ε) c

CFGs and Regular Expressions
● Theorem: Every regular language is context-free.
● Proof idea: Show how to convert an arbitrary

regular expression into a context-free grammar.

a (b ∪ ε) c

CFGs and Regular Expressions
● Theorem: Every regular language is context-free.
● Proof idea: Show how to convert an arbitrary

regular expression into a context-free grammar.

a (b ∪ ε)

X

c

CFGs and Regular Expressions
● Theorem: Every regular language is context-free.
● Proof idea: Show how to convert an arbitrary

regular expression into a context-free grammar.

a (b ∪ ε)

 S → aXc

X

c

CFGs and Regular Expressions
● Theorem: Every regular language is context-free.
● Proof idea: Show how to convert an arbitrary

regular expression into a context-free grammar.

a (b ∪ ε) X → b | ε
 S → aXc

X

c

CFGs and Regular Expressions
● Theorem: Every regular language is context-free.
● Proof idea: Show how to convert an arbitrary

regular expression into a context-free grammar.

a (b ∪ ε) X → b | ε
 S → aXc

X

c

It’s totally fine for a
production to replace a
nonterminal with the

empty string.

CFGs and Regular Expressions
● Theorem: Every regular language is context-free.
● Proof idea: Show how to convert an arbitrary

regular expression into a context-free grammar.

(a b)∪ c *²

CFGs and Regular Expressions
● Theorem: Every regular language is context-free.
● Proof idea: Show how to convert an arbitrary

regular expression into a context-free grammar.

(a b)∪ c *²

CFGs and Regular Expressions
● Theorem: Every regular language is context-free.
● Proof idea: Show how to convert an arbitrary

regular expression into a context-free grammar.

X Y

(a b)∪ c *²

CFGs and Regular Expressions
● Theorem: Every regular language is context-free.
● Proof idea: Show how to convert an arbitrary

regular expression into a context-free grammar.

 S → XY

X Y

(a b)∪ c *²

CFGs and Regular Expressions
● Theorem: Every regular language is context-free.
● Proof idea: Show how to convert an arbitrary

regular expression into a context-free grammar.

 S → XY

X Y

(a b)∪ c *²

CFGs and Regular Expressions
● Theorem: Every regular language is context-free.
● Proof idea: Show how to convert an arbitrary

regular expression into a context-free grammar.

 S → XY

X Y

(a b)∪ c *²

Z

CFGs and Regular Expressions
● Theorem: Every regular language is context-free.
● Proof idea: Show how to convert an arbitrary

regular expression into a context-free grammar.

 X → ZZ
 S → XY

X Y

(a b)∪ c *²

Z

CFGs and Regular Expressions
● Theorem: Every regular language is context-free.
● Proof idea: Show how to convert an arbitrary

regular expression into a context-free grammar.

 X → ZZ
 S → XY

X Y

(a b)∪ c *²

Z

 Z → a | b

CFGs and Regular Expressions
● Theorem: Every regular language is context-free.
● Proof idea: Show how to convert an arbitrary

regular expression into a context-free grammar.

 X → ZZ
 S → XY

 Y → cY | ε
X Y

(a b)∪ c *²

Z

 Z → a | b

Five Possibilities

REG CFL

REG
CFL

REG CFL CFLREG

REG CFL

Two

The Language of a Grammar
● Consider the following CFG G:

S → aSb | ε
● What strings can this generate?

The Language of a Grammar
● Consider the following CFG G:

S → aSb | ε
● What strings can this generate?

S

The Language of a Grammar
● Consider the following CFG G:

S → aSb | ε
● What strings can this generate?

Sa b

The Language of a Grammar
● Consider the following CFG G:

S → aSb | ε
● What strings can this generate?

Sa b

The Language of a Grammar
● Consider the following CFG G:

S → aSb | ε
● What strings can this generate?

Sa ba b

The Language of a Grammar
● Consider the following CFG G:

S → aSb | ε
● What strings can this generate?

Sa ba b

The Language of a Grammar
● Consider the following CFG G:

S → aSb | ε
● What strings can this generate?

Sa ba ba b

The Language of a Grammar
● Consider the following CFG G:

S → aSb | ε
● What strings can this generate?

Sa ba ba b

The Language of a Grammar
● Consider the following CFG G:

S → aSb | ε
● What strings can this generate?

Sa ba ba ba b

The Language of a Grammar
● Consider the following CFG G:

S → aSb | ε
● What strings can this generate?

a ba ba ba b

The Language of a Grammar
● Consider the following CFG G:

S → aSb | ε
● What strings can this generate?

a ba ba ba b

The Language of a Grammar
● Consider the following CFG G:

S → aSb | ε
● What strings can this generate?

 ℒ(G) = { anbn | n ∈ ℕ }

a ba ba ba b

Regular
Languages CFLs

All Languages

Time-Out for Announcements!

Problem Set Five Graded

75th Percentile: 45 / 59 (76%)
50th Percentile: 41 / 59 (69%)
25th Percentile: 34 / 59 (58%)

Problem Set Seven
● Problem Set Six was due today at 1:00PM.

● You can extend the deadline to Saturday at 1:00PM using
a late day.

● Problem Set Seven goes out today. It’s due next
Friday at 1:00PM.
● It’s all about regular expressions, properties of regular

languages, and gives a first glimpse at nonregular
languages.

● We’ve tuned the length given that you have a midterm
next Monday.

● As always, come talk to us if you have any
questions.

Second Midterm Logistics
● Our second midterm exam is next Monday, November 10

from 7:00PM – 10:00PM
 Seating assignments have changed.

 ☞ Check the seating assignment page again. ☜
Write down your new seat.

● Topic coverage is primarily lectures 06 – 13 (functions
through induction) and PS3 – PS5. Finite automata and
onward won’t be tested here.
● Because the material is cumulative, topics from PS1 – PS2 and

Lectures 00 – 05 are also fair game.
● The exam is closed-book and closed-computer. You can bring

one double-sided 8.5” × 11” sheet of notes with you.
● Contact us ASAP if you need an alternate exam and haven’t

heard from us with date/time/place.

Our Advice
● Stay fed and rested. You are not a brain in a

jar. You are a rich, complex, beautiful human
being. Please take care of yourself.

● Read all questions before diving into them.
You don’t have to go sequentially. Read over each
problem so you know what to expect, then pick
whichever one looks easiest and start there.

● Reflect on how far you’ve come. How many of
these questions would you have been able to
understand two months ago? That’s the mark
that you’re learning something!

Three Questions
● What’s something you know now that, at

the start of the quarter, you knew you didn’t
know?

● What’s something you know now that, at
the start of the quarter, you didn’t know you
didn’t know?

● What’s something you don’t know now that,
at the start of the quarter, you didn’t know
you didn’t know?

Back to CS103!

Designing CFGs
● Like designing DFAs, NFAs, and regular expressions,

designing CFGs is a craft.
● When thinking about CFGs:

● Think recursively: Build up bigger structures from smaller
ones.

● Have a construction plan: Know in what order you will
build up the string.

● Store information in nonterminals: Have each
nonterminal correspond to some useful piece of information.

● Check our online “Guide to CFGs” for more
information about CFG design.

● We’ll hit the highlights in the rest of this lecture.

Designing CFGs
● Let Σ = {a, b} and let L = {w ∈ Σ* | w is

a palindrome }
● We can design a CFG for L by thinking

inductively:
● Base case: ε, a, and b are palindromes.
● If ω is a palindrome, then aωa and bωb are

palindromes.
● No other strings are palindromes.

S → ε | a | b | aSa | bSb

Designing CFGs
● Let Σ = {{, }} and let L = {w ∈ Σ* | w is a

string of balanced braces }
● Some sample strings in L:

{{{}}}

{{}}{}

{{}{}}{{}{}}

{{{{{}}}{{}}}}

ε

{}{}

{

Designing CFGs
● Let Σ = {{, }} and let L = {w ∈ Σ* | w is a

string of balanced braces }
● Let's think about this recursively.

● Base case: the empty string is a string of
balanced braces.

● Recursive step: Look at the closing brace that
matches the first open brace.

{{{ {{ {{ {{ {{} }}} }}} }}}}}

Designing CFGs
● Let Σ = {{, }} and let L = {w ∈ Σ* | w is a

string of balanced braces }
● Let's think about this recursively.

● Base case: the empty string is a string of
balanced braces.

● Recursive step: Look at the closing brace that
matches the first open brace.

{{ { { { { { {{ {{ {} } } } } }} } }}}}

Designing CFGs
● Let Σ = {{, }} and let L = {w ∈ Σ* | w is a

string of balanced braces }
● Let's think about this recursively.

● Base case: the empty string is a string of
balanced braces.

● Recursive step: Look at the closing brace that
matches the first open brace.

{{ { { { { { {{ {{ {} } } } } }} } }}}}

Designing CFGs
● Let Σ = {{, }} and let L = {w ∈ Σ* | w is a

string of balanced braces }
● Let's think about this recursively.

● Base case: the empty string is a string of
balanced braces.

● Recursive step: Look at the closing brace that
matches the first open brace.

{ { { { { { {{ {{ {} } } } } } } }}}}

Designing CFGs
● Let Σ = {{, }} and let L = {w ∈ Σ* | w is a

string of balanced braces }
● Let's think about this recursively.

● Base case: the empty string is a string of
balanced braces.

● Recursive step: Look at the closing brace that
matches the first open brace. Removing the first
brace and the matching brace forms two new
strings of balanced braces.

S → {S}S | ε

Designing CFGs
● Let Σ = {a, b} and let L = {w ∈ Σ* | w

has the same number of a's and b's }

Which of these CFGs have language L?

S → aSb | bSa | ε

S → abSba | baSab | ε S → SbaS | SabS | ε

S → abS | baS | ε

Answer at
https://cs103.stanford.edu/pollev

https://cs103.stanford.edu/pollev

Designing CFGs
● Let Σ = {a, b} and let L = {w ∈ Σ* | w

has the same number of a's and b's }

Which of these CFGs have language L?

S → aSb | bSa | ε

S → abSba | baSab | ε S → SbaS | SabS | ε

S → abS | baS | ε

Designing CFGs
● Let Σ = {a, b} and let L = {w ∈ Σ* | w

has the same number of a's and b's }

Which of these CFGs have language L?

S → aSb | bSa | ε

S → abSba | baSab | ε S → SbaS | SabS | ε

S → abS | baS | ε

Designing CFGs
● Let Σ = {a, b} and let L = {w ∈ Σ* | w

has the same number of a's and b's }

Which of these CFGs have language L?

S → aSb | bSa | ε

S → abSba | baSab | ε S → SbaS | SabS | ε

S → abS | baS | ε

Designing CFGs
● Let Σ = {a, b} and let L = {w ∈ Σ* | w

has the same number of a's and b's }

Which of these CFGs have language L?

S → aSb | bSa | ε

S → abSba | baSab | ε S → SbaS | SabS | ε

S → abS | baS | ε

Designing CFGs: A Caveat
● When designing a CFG for a language,

make sure that it
● generates all the strings in the language and
● never generates a string outside the

language.
● The first of these can be tricky – make

sure to test your grammars!
● You'll (most likely) design your own CFG

for this language on Problem Set 8.

Designing CFGs
● When designing CFGs, remember that each

nonterminal can be expanded out
independently of the others.

● Let Σ = {a, ≟} and let L = {an a≟ n | n ∈ ℕ }.
● Is the following a CFG for L?

S → X≟X
X → aX | ε

S
⇒ X≟X
⇒ aX≟X
⇒ aaX≟X
⇒ aa≟X
⇒ aa a≟ X
⇒ aa a≟

Finding a Build Order
● Let Σ = {a, ≟} and let L = {an a≟ n | n ∈ ℕ }.
● To build a CFG for L, we need to be more clever with

how we construct the string.
● If we build the strings of a's independently of one

another, then we can't enforce that they have the
same length.

● Idea: Build both strings of a's at the same time.
● Here's one possible grammar based on that idea:

S → ≟ | aSa S
⇒ aSa
⇒ aaSaa
⇒ aaaSaaa
⇒ aaa aaa≟

Summary of CFG Design Tips
● Look for recursive structures where they exist:

they can help guide you toward a solution.
● Keep the build order in mind – often, you'll

build two totally different parts of the string
concurrently.
● Usually, those parts are built in opposite directions:

one's built left-to-right, the other right-to-left.
● Use different nonterminals to represent

different structures.

Applications of Context-Free Grammars

CFGs for Programming Languages
BLOCK → STMT

 | { STMTS }
STMTS → ε

 | STMT STMTS

STMT → EXPR;
 | if (EXPR) BLOCK

 | while (EXPR) BLOCK
 | do BLOCK while (EXPR);
 | BLOCK
 | …

EXPR → identifier
 | constant

 | EXPR + EXPR
 | EXPR – EXPR
 | EXPR * EXPR
 | ...

Grammars in Compilers
● One of the key steps in a compiler is figuring out

what a program “means.”
● This is usually done by defining a grammar showing

the high-level structure of a programming language.
● There are certain classes of grammars (LL(1)

grammars, LR(1) grammars, LALR(1) grammars,
etc.) for which it's easy to figure out how a
particular string was derived.

● Tools like yacc or bison automatically generate
parsers from these grammars.

● Curious to learn more? Take CS143!

Natural Language Processing
● By building context-free grammars for actual

languages and applying statistical inference, it's
possible for a computer to recover the likely meaning
of a sentence.
● In fact, CFGs were first called phrase-structure

grammars and were introduced by Noam Chomsky in his
seminal work Syntactic Structures.

● They were then adapted for use in the context of
programming languages, where they were called Backus-
Naur forms.

● The Stanford Parser project is one place to look for
an example of this.

● Want to learn more? Take CS124 or CS224N!

http://nlp.stanford.edu/software/lex-parser.shtml

Next Time
● No Class Monday (Midterm 2)
● Then, when we get back…

● Turing Machines
– What does a computer with unbounded memory

look like?
– How would you program it?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 117
	Slide 118
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126

