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A Motivating Question



  

python3
 

>>> 



  

python3
 

>>> (137 + 42) – 2 * 3



  

python3
 

>>> (137 + 42) – 2 * 3
173

>>> 



  

python3
 

>>> (137 + 42) – 2 * 3
173

>>> (60 + 37) + 5 * 8



  

python3
 

>>> (137 + 42) – 2 * 3
173

>>> (60 + 37) + 5 * 8
137

>>> 



  

python3
 

>>> (137 + 42) – 2 * 3
173

>>> (60 + 37) + 5 * 8
137

>>> (200 / 2) + 6 / 2



  

python3
 

>>> (137 + 42) – 2 * 3
173

>>> (60 + 37) + 5 * 8
137

>>> (200 / 2) + 6 / 2
103.0

>>> 



  

Mad Libs for Arithmetic

Int Op Int Op Int Op Int

Slide credit: Amy Liu

(          )



  

Mad Libs for Arithmetic

  26  +  42   *  2  +  1
Int Op Int Op Int Op Int

Slide credit: Amy Liu

(          )



  

Mad Libs for Arithmetic

Int Op Int Op Int Op Int

Slide credit: Amy Liu

(          )



  

Mad Libs for Arithmetic

   7   *    5    /  5  -  49
Int Op Int Op Int Op Int

Slide credit: Amy Liu

(          )



  

Mad Libs for Arithmetic

Int Op Int Op Int Op Int

Slide credit: Amy Liu

(          )
This only lets us make arithmetic expressions 

of the form (Int Op Int) Op Int Op Int.

What about arithmetic expressions that don’t 
follow this pattern?



  

Recursive Mad Libs

Expr



  

Recursive Mad Libs

Expr

What can an arithmetic expression be?

             int A single number.
    Expr Op Expr Two expressions joined by an operator.
          (Expr)  A parenthesized expression.
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Recursive Mad Libs

Op

What can an arithmetic expression be?

             int A single number.
    Expr Op Expr Two expressions joined by an operator.
          (Expr)  A parenthesized expression.

Expr Expr
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Recursive Mad Libs

Op

What can an arithmetic expression be?

             int A single number.
    Expr Op Expr Two expressions joined by an operator.
          (Expr)  A parenthesized expression.

Expr Expr

int +
ExprOp



  

Recursive Mad Libs

Op

What can an arithmetic expression be?

             int A single number.
    Expr Op Expr Two expressions joined by an operator.
          (Expr)  A parenthesized expression.

Expr Expr

int +
ExprOp



  

Recursive Mad Libs

Op

What can an arithmetic expression be?

             int A single number.
    Expr Op Expr Two expressions joined by an operator.
          (Expr)  A parenthesized expression.

Expr Expr

int +
ExprOp

int



  

Recursive Mad Libs

Op

What can an arithmetic expression be?

             int A single number.
    Expr Op Expr Two expressions joined by an operator.
          (Expr)  A parenthesized expression.

Expr Expr

int +
ExprOp

int ×



  

Recursive Mad Libs

Op

What can an arithmetic expression be?

             int A single number.
    Expr Op Expr Two expressions joined by an operator.
          (Expr)  A parenthesized expression.

Expr Expr

int +
ExprOp

int × int



  

Recursive Mad Libs

Expr

What can an arithmetic expression be?

             int A single number.
    Expr Op Expr Two expressions joined by an operator.
          (Expr)  A parenthesized expression.



  

Recursive Mad Libs
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What can an arithmetic expression be?

             int A single number.
    Expr Op Expr Two expressions joined by an operator.
          (Expr)  A parenthesized expression.



  

Recursive Mad Libs

Expr

What can an arithmetic expression be?

             int A single number.
    Expr Op Expr Two expressions joined by an operator.
          (Expr)  A parenthesized expression.

( )
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Recursive Mad Libs

Op

What can an arithmetic expression be?

             int A single number.
    Expr Op Expr Two expressions joined by an operator.
          (Expr)  A parenthesized expression.

( )
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Recursive Mad Libs

Op

What can an arithmetic expression be?

             int A single number.
    Expr Op Expr Two expressions joined by an operator.
          (Expr)  A parenthesized expression.

( )
Expr Expr

int /



  

Recursive Mad Libs

Op

What can an arithmetic expression be?

             int A single number.
    Expr Op Expr Two expressions joined by an operator.
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( )
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Recursive Mad Libs

Op

What can an arithmetic expression be?

             int A single number.
    Expr Op Expr Two expressions joined by an operator.
          (Expr)  A parenthesized expression.

( )
Expr Expr

int / )(



  

Recursive Mad Libs

Op

What can an arithmetic expression be?

             int A single number.
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Recursive Mad Libs
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             int A single number.
    Expr Op Expr Two expressions joined by an operator.
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Recursive Mad Libs

Op

What can an arithmetic expression be?

             int A single number.
    Expr Op Expr Two expressions joined by an operator.
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( )
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What can an arithmetic expression be?

             int A single number.
    Expr Op Expr Two expressions joined by an operator.
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Recursive Mad Libs

Op

What can an arithmetic expression be?

             int A single number.
    Expr Op Expr Two expressions joined by an operator.
          (Expr)  A parenthesized expression.

( )
Expr Expr
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Recursive Mad Libs

Op

What can an arithmetic expression be?

             int A single number.
    Expr Op Expr Two expressions joined by an operator.
          (Expr)  A parenthesized expression.

( )
Expr Expr

int / )(
Op Expr

int + int



  

A context-free grammar (or CFG) is a 
recursive set of rules that define a 

language.

(There’s a bunch of specific requirements about 
what those rules can be; more on that in a bit.)



  

Arithmetic Expressions
● Here’s how we might express the 

recursive rules from earlier as a CFG.

Expr → int
Expr → Expr Op Expr
Expr → (Expr)
Op → +
Op → -
Op → ×
Op → /

This is called a 
production rule. It 
says “if you see Expr, 
you can replace it with 

Expr Op Expr.”



  

Arithmetic Expressions
● Here’s how we might express the 

recursive rules from earlier as a CFG.

Expr → int
Expr → Expr Op Expr
Expr → (Expr)
Op → +
Op → -
Op → ×
Op → /

This one says “if you 
see Op, you can 
replace it with -.”



  

Arithmetic Expressions
● Here’s how we might express the 

recursive rules from earlier as a CFG.

Expr → int
Expr → Expr Op Expr
Expr → (Expr)
Op → +
Op → -
Op → ×
Op → /

⇒ Expr
⇒ Expr Op Expr
⇒ Expr Op int
⇒ int Op int
⇒ int / int



  

Arithmetic Expressions
● Here’s how we might express the 

recursive rules from earlier as a CFG.

Expr → int
Expr → Expr Op Expr
Expr → (Expr)
Op → +
Op → -
Op → ×
Op → /

⇒ Expr
⇒ Expr Op Expr
⇒ Expr Op int
⇒ int Op int
⇒ int / int

These red symbols are 
called nonterminals. 

They’re placeholders that 
get expanded later on.



  

Arithmetic Expressions
● Here’s how we might express the 

recursive rules from earlier as a CFG.

Expr → int
Expr → Expr Op Expr
Expr → (Expr)
Op → +
Op → -
Op → ×
Op → /

⇒ Expr
⇒ Expr Op Expr
⇒ Expr Op int
⇒ int Op int
⇒ int / int

The symbols in blue 
monospace are terminals. 
They’re the final characters 

used in the string and 
never get replaced.



  

Arithmetic Expressions
● Here’s how we might express the 

recursive rules from earlier as a CFG.

Expr
⇒ Expr Op Expr
⇒ Expr Op (Expr)
⇒ Expr Op (Expr Op Expr)
⇒ Expr × (Expr Op Expr)
⇒ int × (Expr Op Expr)
⇒ int × (int Op Expr)
⇒ int × (int Op int)
⇒ int × (int + int)

Expr → int
Expr → Expr Op Expr
Expr → (Expr)
Op → +
Op → -
Op → ×
Op → /



  

Context-Free Grammars
● Formally, a context-free grammar 

is a collection of four items:
● a set of nonterminal symbols

(also called variables),
● a set of terminal symbols (the 

alphabet of the CFG),
● a set of production rules saying 

how each nonterminal can be 
replaced by a string of terminals 
and nonterminals, and

● a start symbol (which must be a 
nonterminal) that begins the 
derivation. By convention, the start 
symbol is the one on the left-hand 
side of the first production.

Expr → int
Expr → Expr Op Expr
Expr → (Expr)
Op → +
Op → -
Op → ×
Op → /



  

Some CFG Notation
● In today’s slides, capital letters in Bold Red 

Uppercase will represent nonterminals.
● e.g. A, B, C, D

● Lowercase letters in blue monospace will represent 
terminals.
● e.g. t, u, v, w

● Lowercase Greek letters in gray italics will 
represent arbitrary strings of terminals and 
nonterminals.
● e.g. α, γ, ω

● You don't need to use these conventions on your 
own; just make sure whatever you do is readable. 😃



  

A Notational Shorthand

Expr → int
Expr → Expr Op Expr
Expr → (Expr)
Op → +
Op → -
Op → ×
Op → /



  

A Notational Shorthand

Expr → int  |  Expr Op Expr  |  (Expr)
Op → +  |  -  |  ×  |  /



  

Derivations
⇒ Expr
⇒ Expr Op Expr
⇒ Expr Op (Expr)
⇒ Expr Op (Expr Op Expr)
⇒ Expr × (Expr Op Expr)
⇒ int × (Expr Op Expr)
⇒ int × (int Op Expr)
⇒ int × (int Op int)
⇒ int × (int + int)

● A sequence of zero or more 
steps where nonterminals are 
replaced by the right-hand 
side of a production is called a 
derivation.

● If string α derives string ω, 
we write α ⇒* ω.

● In the example on the left, we 
see that
Expr ⇒* int × (int + int).

Expr → int  |  Expr Op Expr  |  (Expr)
Op → +  |  -  |  ×  |  /



  

The Language of a Grammar
● If G is a CFG with alphabet Σ and start 

symbol S, then the language of G is the 
set

ℒ(G) = { ω ∈ Σ* | S ⇒* ω }   
● That is, (ℒ G) is the set of strings of 

terminals derivable from the start 
symbol.



  

Consider the following CFG G over Σ = {a, b, c, d}:
 

Q → Qa | dH
H → bHb | c

 

Which of the following strings are in (ℒ G)?
 

dca
dc
cad
bcb

dHaa

If G is a CFG with alphabet Σ and start symbol S, 
then the language of G is the set

 

ℒ(G) = { ω ∈ Σ* | S ⇒* ω }

Answer at https://cs103.stanford.edu/pollev

https://cs103.stanford.edu/pollev


  

Context-Free Languages
● A language L is called a context-free 

language (or CFL) if there is a CFG G 
such that L = (ℒ G).

● Questions:
● How are context-free and regular languages 

related?
● How do we design context-free grammars for 

context-free languages?



  

Context-Free Languages

A language L is called a context-free 
language (or CFL) if there is a CFG G 
such that L = (ℒ G).
Questions:
● How are context-free and regular languages 

related?
How do we design context-free grammars for 
context-free languages?



  

Five Possibilities

REG CFL

REG
CFL

REG CFL CFLREG

REG CFL



  

CFGs and Regular Expressions
● CFGs consist purely of production rules of the 

form A → ω. They do not have the regular 
expression operators * or ∪.

● You can use the symbols * and ∪ if you’d like in 
a CFG, but they just stand for themselves.

● Consider this CFG G:
S → a*b

● Here, (ℒ G) = {a*b} and has cardinality one. 
That is, (ℒ G) ≠ { anb | n ∈ ℕ }.



  

CFGs and Regular Expressions
● Theorem: Every regular language is context-free.
● Proof idea: Show how to convert an arbitrary 

regular expression into a context-free grammar.

a ( b ∪ ε ) c
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CFGs and Regular Expressions
● Theorem: Every regular language is context-free.
● Proof idea: Show how to convert an arbitrary 

regular expression into a context-free grammar.

a ( b ∪ ε )

 S → aXc

X

c



  

CFGs and Regular Expressions
● Theorem: Every regular language is context-free.
● Proof idea: Show how to convert an arbitrary 

regular expression into a context-free grammar.

a ( b ∪ ε ) X → b | ε
 S → aXc

X

c



  

CFGs and Regular Expressions
● Theorem: Every regular language is context-free.
● Proof idea: Show how to convert an arbitrary 

regular expression into a context-free grammar.

a ( b ∪ ε ) X → b | ε
 S → aXc

X

c

It’s totally fine for a 
production to replace a 
nonterminal with the 

empty string.



  

CFGs and Regular Expressions
● Theorem: Every regular language is context-free.
● Proof idea: Show how to convert an arbitrary 

regular expression into a context-free grammar.

( a b )∪ c *²
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CFGs and Regular Expressions
● Theorem: Every regular language is context-free.
● Proof idea: Show how to convert an arbitrary 

regular expression into a context-free grammar.

X Y

( a b )∪ c *²



  

CFGs and Regular Expressions
● Theorem: Every regular language is context-free.
● Proof idea: Show how to convert an arbitrary 

regular expression into a context-free grammar.
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X Y
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CFGs and Regular Expressions
● Theorem: Every regular language is context-free.
● Proof idea: Show how to convert an arbitrary 

regular expression into a context-free grammar.

 S → XY
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CFGs and Regular Expressions
● Theorem: Every regular language is context-free.
● Proof idea: Show how to convert an arbitrary 

regular expression into a context-free grammar.

 S → XY

X Y

( a b )∪ c *²

Z



  

CFGs and Regular Expressions
● Theorem: Every regular language is context-free.
● Proof idea: Show how to convert an arbitrary 

regular expression into a context-free grammar.

 X → ZZ
 S → XY

X Y

( a b )∪ c *²

Z



  

CFGs and Regular Expressions
● Theorem: Every regular language is context-free.
● Proof idea: Show how to convert an arbitrary 

regular expression into a context-free grammar.

 X → ZZ
 S → XY

X Y

( a b )∪ c *²

Z

 Z → a | b



  

CFGs and Regular Expressions
● Theorem: Every regular language is context-free.
● Proof idea: Show how to convert an arbitrary 

regular expression into a context-free grammar.

 X → ZZ
 S → XY

 Y → cY | ε
X Y

( a b )∪ c *²

Z

 Z → a | b



  

Five Possibilities

REG CFL

REG
CFL

REG CFL CFLREG

REG CFL

Two



  

The Language of a Grammar
● Consider the following CFG G:

S → aSb | ε
● What strings can this generate?
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● Consider the following CFG G:

S → aSb | ε
● What strings can this generate?

Sa b
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The Language of a Grammar
● Consider the following CFG G:

S → aSb | ε
● What strings can this generate?

Sa ba ba ba b



  

The Language of a Grammar
● Consider the following CFG G:

S → aSb | ε
● What strings can this generate?

a ba ba ba b



  

The Language of a Grammar
● Consider the following CFG G:

S → aSb | ε
● What strings can this generate?

a ba ba ba b



  

The Language of a Grammar
● Consider the following CFG G:

S → aSb | ε
● What strings can this generate?

 ℒ(G) = { anbn | n ∈ ℕ }   

a ba ba ba b



  

Regular
Languages CFLs

All Languages



  

Time-Out for Announcements!



  

Problem Set Five Graded

75th Percentile: 45 / 59 (76%)
50th Percentile: 41 / 59 (69%)
25th Percentile: 34 / 59 (58%)



  

Problem Set Seven
● Problem Set Six was due today at 1:00PM.

● You can extend the deadline to Saturday at 1:00PM using 
a late day.

● Problem Set Seven goes out today. It’s due next 
Friday at 1:00PM.
● It’s all about regular expressions, properties of regular 

languages, and gives a first glimpse at nonregular 
languages.

● We’ve tuned the length given that you have a midterm 
next Monday.

● As always, come talk to us if you have any 
questions.



  

Second Midterm Logistics
● Our second midterm exam is next Monday, November 10 

from 7:00PM – 10:00PM
    Seating assignments have changed.    

    ☞ Check the seating assignment page again.    ☜
Write down your new seat.

● Topic coverage is primarily lectures 06 – 13 (functions 
through induction) and PS3 – PS5. Finite automata and 
onward won’t be tested here.
● Because the material is cumulative, topics from PS1 – PS2 and 

Lectures 00 – 05 are also fair game.
● The exam is closed-book and closed-computer. You can bring 

one double-sided 8.5” × 11” sheet of notes with you.
● Contact us ASAP if you need an alternate exam and haven’t 

heard from us with date/time/place.



  

Our Advice
● Stay fed and rested. You are not a brain in a 

jar. You are a rich, complex, beautiful human 
being. Please take care of yourself.

● Read all questions before diving into them. 
You don’t have to go sequentially. Read over each 
problem so you know what to expect, then pick 
whichever one looks easiest and start there.

● Reflect on how far you’ve come. How many of 
these questions would you have been able to 
understand two months ago? That’s the mark 
that you’re learning something!



  



  



  

Three Questions
● What’s something you know now that, at 

the start of the quarter, you knew you didn’t 
know?

● What’s something you know now that, at 
the start of the quarter, you didn’t know you 
didn’t know? 

● What’s something you don’t know now that, 
at the start of the quarter, you didn’t know 
you didn’t know?



  

Back to CS103!



  

Designing CFGs
● Like designing DFAs, NFAs, and regular expressions, 

designing CFGs is a craft.
● When thinking about CFGs:

● Think recursively: Build up bigger structures from smaller 
ones.

● Have a construction plan: Know in what order you will 
build up the string.

● Store information in nonterminals: Have each 
nonterminal correspond to some useful piece of information.

● Check our online “Guide to CFGs” for more 
information about CFG design.

● We’ll hit the highlights in the rest of this lecture.



  

Designing CFGs
● Let Σ = {a, b} and let L = {w ∈ Σ* | w is 

a palindrome }
● We can design a CFG for L by thinking 

inductively:
● Base case: ε, a, and b are palindromes.
● If ω is a palindrome, then aωa and bωb are 

palindromes.
● No other strings are palindromes.

S → ε | a | b | aSa | bSb



  

Designing CFGs
● Let Σ = {{, }} and let L = {w ∈ Σ* | w is a 

string of balanced braces }
● Some sample strings in L:

{{{}}}  

{{}}{}  

{{}{}}{{}{}}  

{{{{{}}}{{}}}}  

ε  

{}{}  



  

{

Designing CFGs
● Let Σ = {{, }} and let L = {w ∈ Σ* | w is a 

string of balanced braces }
● Let's think about this recursively.

● Base case: the empty string is a string of 
balanced braces.

● Recursive step: Look at the closing brace that 
matches the first open brace.

{{{ {{ {{ {{ {{} }}} }}} }}}}}



  

Designing CFGs
● Let Σ = {{, }} and let L = {w ∈ Σ* | w is a 

string of balanced braces }
● Let's think about this recursively.

● Base case: the empty string is a string of 
balanced braces.

● Recursive step: Look at the closing brace that 
matches the first open brace.

{{ { { { { { {{ {{ {} } } } } }} } }}}}



  

Designing CFGs
● Let Σ = {{, }} and let L = {w ∈ Σ* | w is a 

string of balanced braces }
● Let's think about this recursively.

● Base case: the empty string is a string of 
balanced braces.

● Recursive step: Look at the closing brace that 
matches the first open brace.

{{ { { { { { {{ {{ {} } } } } }} } }}}}



  

Designing CFGs
● Let Σ = {{, }} and let L = {w ∈ Σ* | w is a 

string of balanced braces }
● Let's think about this recursively.

● Base case: the empty string is a string of 
balanced braces.

● Recursive step: Look at the closing brace that 
matches the first open brace.

{ { { { { { {{ {{ {} } } } } } } }}}}



  

Designing CFGs
● Let Σ = {{, }} and let L = {w ∈ Σ* | w is a 

string of balanced braces }
● Let's think about this recursively.

● Base case: the empty string is a string of 
balanced braces.

● Recursive step: Look at the closing brace that 
matches the first open brace. Removing the first 
brace and the matching brace forms two new 
strings of balanced braces. 

S → {S}S | ε



  

Designing CFGs
● Let Σ = {a, b} and let L = {w ∈ Σ* | w 

has the same number of a's and b's }

Which of these CFGs have language L?

S → aSb | bSa | ε

S → abSba | baSab | ε S → SbaS | SabS | ε

S → abS | baS | ε

Answer at
https://cs103.stanford.edu/pollev

https://cs103.stanford.edu/pollev
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S → abS | baS | ε
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Designing CFGs
● Let Σ = {a, b} and let L = {w ∈ Σ* | w 

has the same number of a's and b's }

Which of these CFGs have language L?

S → aSb | bSa | ε

S → abSba | baSab | ε S → SbaS | SabS | ε

S → abS | baS | ε



  

Designing CFGs: A Caveat
● When designing a CFG for a language, 

make sure that it
● generates all the strings in the language and
● never generates a string outside the 

language.
● The first of these can be tricky – make 

sure to test your grammars!
● You'll (most likely) design your own CFG 

for this language on Problem Set 8.



  

Designing CFGs
● When designing CFGs, remember that each 

nonterminal can be expanded out 
independently of the others.

● Let Σ = {a, ≟} and let L = {an a≟ n | n ∈ ℕ }.
● Is the following a CFG for L?

S → X≟X
X → aX | ε

S
⇒ X≟X
⇒ aX≟X
⇒ aaX≟X
⇒ aa≟X
⇒ aa a≟ X
⇒ aa a≟



  

Finding a Build Order
● Let Σ = {a, ≟} and let L = {an a≟ n | n ∈ ℕ }.
● To build a CFG for L, we need to be more clever with 

how we construct the string.
● If we build the strings of a's independently of one 

another, then we can't enforce that they have the 
same length.

● Idea: Build both strings of a's at the same time.
● Here's one possible grammar based on that idea:

S → ≟ | aSa  S
⇒ aSa
⇒ aaSaa
⇒ aaaSaaa
⇒ aaa aaa≟



  

Summary of CFG Design Tips
● Look for recursive structures where they exist: 

they can help guide you toward a solution.
● Keep the build order in mind – often, you'll 

build two totally different parts of the string 
concurrently.
● Usually, those parts are built in opposite directions: 

one's built left-to-right, the other right-to-left.
● Use different nonterminals to represent 

different structures.



  

Applications of Context-Free Grammars



  

CFGs for Programming Languages
BLOCK → STMT

  | { STMTS }
STMTS → ε

 | STMT STMTS

STMT → EXPR;
  | if (EXPR) BLOCK

   | while (EXPR) BLOCK
   | do BLOCK while (EXPR);
   | BLOCK
   | …

EXPR → identifier
  | constant

    | EXPR + EXPR
    | EXPR – EXPR
    | EXPR * EXPR
    | ...



  

Grammars in Compilers
● One of the key steps in a compiler is figuring out 

what a program “means.”
● This is usually done by defining a grammar showing 

the high-level structure of a programming language.
● There are certain classes of grammars (LL(1) 

grammars, LR(1) grammars, LALR(1) grammars, 
etc.) for which it's easy to figure out how a 
particular string was derived.

● Tools like yacc or bison automatically generate 
parsers from these grammars.

● Curious to learn more? Take CS143!



  

Natural Language Processing
● By building context-free grammars for actual 

languages and applying statistical inference, it's 
possible for a computer to recover the likely meaning 
of a sentence.
● In fact, CFGs were first called phrase-structure 

grammars and were introduced by Noam Chomsky in his 
seminal work Syntactic Structures.

● They were then adapted for use in the context of 
programming languages, where they were called Backus-
Naur forms.

● The Stanford Parser project is one place to look for 
an example of this.

● Want to learn more? Take CS124 or CS224N!

http://nlp.stanford.edu/software/lex-parser.shtml


  

Next Time
● No Class Monday (Midterm 2)
● Then, when we get back…

● Turing Machines
– What does a computer with unbounded memory 

look like?
– How would you program it?
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